Explore our research

  • Stellar Astrophysics

    Image of the sun

The stellar astrophysics group studies the formation of stars and their planetary systems, the properties of stars, and how stars effect their environments. We pursue observational programmes in the X-ray, ultraviolet, optical, infrared, mm and radio bands using ground-based (e.g. JCMT, eMerlin) and space-borne observatories (Kepler, Herschel, XMM-Newton). By combining photometric, spectroscopic and imaging observations we unravel the interactions between the stars and their environments, and the processes within the stars themselves. We additionally pursue theoretical and computational studies of how Sun-like stars form in collapsing clouds, and how low-mass stars, brown dwarfs and planets form in protostellar discs.


Asteroseismology is the study of oscillations and pulsations in a star using a collection of observational techniques. These pulsations provide a unique view into the interiors of stars. Professor Donald Kurtz applies the techniques of Asteroseismology to see beneath the surfaces of the stars, a place Sir Arthur Eddington thought was “less accessible to scientific investigation than any other region of the Universe”. Professor Kurtz is co-author of the fundamental textbook, Asteroseismology (Springer Publishers, 2010, 866 pages).

See more

Circumstellar Matter and Interacting Binaries

Many stars eject copious quantities of gas and dust, particularly in the late and early stages of their lives. By studying this material we trace the events in the stars leading to the ejection. We also examine a number of fundamental processes, including nebula shaping, shock interactions, and dust formation and chemistry. Binary stars make up perhaps 40% of the "bright lights" in our night sky. In many cases the stars of a binary system interact and exchange matter via gravitational transfer and an accretion disc. This disc can out-shine the stars as frictional and tidal effects convert orbital angular momentum to light. By observing the effects of eclipses on the light curve and correlating this with the x-ray spectra we can learn a considerable amount about the structure of and activity on the disc.

See more

Star Formation and Exoplanets

Stars form within the cores of cold, dense clouds of interstellar gas and dust. When gravity dominates over turbulent, thermal, and magnetic support, the cores of these clouds collapse to form stars. The stellar masses range from a few times the mass of Jupiter, the largest planet in our Solar System, up to a few hundred times the mass of our Sun. We investigate the initial conditions of star formation using observations from ground-based (e.g. JCMT, PdBI) and space-borne observatories (e.g.Herschel), and radiative transfer modelling. We also explore the physics of protoplanetary discs that relate to the formation of giant exoplanets, brown dwarfs and low-mass stars, and develop novel computational hydrodynamics and radiative transfer methods.

See more

Solar-Stellar Connection

The Sun is the closest star to Earth and therefore we understand it in more detail than any other star. To compare the activity of the Sun with the activity of other stars that are much farther away we must look to large-scale solar phenomena. The study of the solar-stellar connection has been pursued using observations of flares on rapidly rotating Sun-like stars.

See more

Massive Star - Supernova Connection

Supernovae are bright, cosmic explosions which often outshine their host galaxy. Over recent years dedicated surveys have identified a variety of different supernova classifications, leading to what is now known as the “supernova zoo”. In order to identify the star that exploded, the progenitor star, we use existing imaging from telescope archives to try and match the position of the supernova with a specific star, however this direct-detection method has not proved as effective and the source of many of these cosmic explosions is still unknown. We can investigate the environments of supernova and massive-star, since massive stars have very short lifetimes they should not move very far from where they are born and so if they are indeed progenitors of supernova then the properties of each environment should be the same. Also, by undertaking narrow-band imaging surveys we can build up a catalogue of evolved massive stars, thought to be the progenitor of at least 2 different supernova subtypes which can then be referred to for any future supernovae which will provide us direct confirmation of this massive star-supernova connection.

Events and news

You can view upcoming seminars and events on the Jeremiah Horrocks institute website.

Courses and Postgraduate Study

Visit the study astronomy website for more information on teaching and related courses. To find out more about Phd studentships and postgraduate study, visit the Jeremiah Horrocks Institute website.


Stellar astrophysics at the University of Central Lancashire is currently pursued by the following individuals:

Academic Staff

Prof Don Kurtz: Asteroseismology

Professor Derek Ward-Thompson: Observational Star formation

Dr Stewart Eyres: Circumstellar matter. Interacting binaries. Evolved stars.

Dr Jason Kirk: Observational Star Formation

Dr Joanne Pledger: Massive Star - Supernova Connection

Dr Dimitris Stamatellos: Star and Planet Formation

Postdoctoral Researches

Dr. Alex Dunhill: Exoplanets, Planet Formation

Dr. Daniel Holdsworth: Asteroseismology

Dr. Kate Pattle: Observational Star Formation

PhD and MSc Students

Dominic Bowman: Astroseismology

David Bresnahan: Observational Star Formation

Aaron Brocklebank: Massive Star- Supernova Connection

Kelly Hambleton: Asteroseismology

Ben Macfarlane: Star and Planet Formation

Anthony Mercer: Star and Planet Formation

Additional Information

Jeremiah Horrocks Institute for Astrophysics and Supercomputing,
University of Central Lancashire,
United Kingdom
Tel 01772 893312
Fax 01772 892996