Navigation

News and events

Astrophysicists map out the light energy contained within the Milky Way

Astrophysicists map out the light energy contained within the Milky Way  Banner Image

An all-sky image of the Milky Way. Image credits: ESA, HFI and LFI consortia.

UCLan collaborates with European colleagues to shed light onto the make-up of our galaxy

For the first time, a team of scientists have calculated the distribution of all light energy contained within the Milky Way, which will provide new insight into the make-up of our galaxy and how stars in spiral galaxies such as ours form. 

This research, conducted by astrophysicists at the University of Central Lancashire (UCLan), in collaboration with colleagues from the Max Planck Institute for Nuclear Physics in Heidelberg, Germany and from the Astronomical Institute of the Romanian Academy, also shows how the stellar photons, or stellar light, within the Milky Way control the production of the highest energy photons in the Universe, the gamma-rays.

The research, published in the latest volume of the Monthly Notices of the Royal Astronomical Society, was made possible using a novel method involving computer calculations that track the destiny of all photons in the galaxy, including the photons that are emitted by interstellar dust, as heat radiation.

Previous attempts to derive the distribution of all light in the Milky Way based on star counts have failed to account for the all-sky images of the Milky Way, including recent images provided by the European Space Agency's Planck Space Observatory, which map out heat radiation or infrared light.

We have not only determined the distribution of light energy in the Milky Way, but also made predictions for the stellar and interstellar dust content of the Milky Way.

Lead author, Professor Cristina Popescu from the University of Central Lancashire, said: "We have not only determined the distribution of light energy in the Milky Way, but also made predictions for the stellar and interstellar dust content of the Milky Way.

By tracking all stellar photons and making predictions for how the Milky Way should appear in ultraviolet, visual and heat radiation, scientists have been able to calculate a complete picture of how stellar light is distributed throughout our Galaxy. An understanding of these processes is a crucial step towards gaining a complete picture of our Galaxy and its history.

Commenting on the research, Dr Richard Tuffs from the Max Planck Institute for Nuclear Physics and one of the authors of the paper, said: “It has to be noted that looking at galaxies from outside is a much easier task than looking from inside, as in the case of our Galaxy.”

The modelling of the distribution of light in the Milky Way follows on from previous research that Professor Popescu and Dr Tuffs conducted on modelling the stellar light from other galaxies, where the observer has an outside view.

It has to be noted that looking at galaxies from outside is a much easier task than looking from inside, as in the case of our Galaxy.

Scientists have been also able to show how the stellar light within our Galaxy affects the production of gamma-ray photons through interactions with cosmic rays.  Cosmic rays are high-energy electrons and protons that control star and planet formation and the processes governing galactic evolution. They promote chemical reactions in the interstellar space, leading to the formation of complex and ultimately life-critical molecules.

Dr Tuffs added: "Working backwards through the chain of interactions and propagations, one can work out the original source of the cosmic rays."

Professor Popescu also commented that this research, funded by the Leverhulme Trust, was strongly interdisciplinary, bringing together optical and infrared astrophysics and astro-particle physics.

"This research would not have been possible without the support of the Leverhulme Trust, which is greatly acknowledged."

Professor Popescu also commented: “We had developed some of our computational programs before this research started, in the context of modelling spiral galaxies, and we also need to thank the UK's Science and Technology Facility Council (STFC) for their support in the development of these codes.”

 

Photo caption above: An all-sky image of the Milky Way, as observed by the Planck Space Observatory in infrared. The data contained in this image was used in this research and was essential in calculating the distribution of the light energy of our Galaxy. Image credits: ESA, HFI and LFI consortia.

Press Office | 28 July 2017